



# Radar Systems Engineering Lecture 2 Review of Electromagnetism

Dr. Robert M. O'Donnell IEEE New Hampshire Section Guest Lecturer



# **Reasons for Review Lecture**



- A number of potential students may not have taken a 3<sup>rd</sup> year undergraduate course in electromagnetism
  - Electrical/Computer Engineering Majors in the Computer Engineering Track
  - Computer Science Majors
  - Mathematics Majors
  - Mechanical Engineering Majors

• If this relatively brief review is not sufficient, a formal course in advanced undergraduate course may be required.



# **Outline**





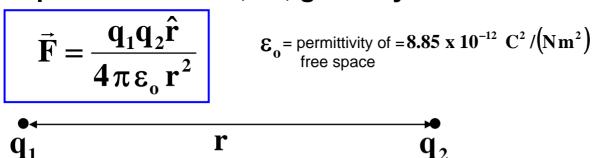
- Introduction
  - Coulomb's Law
  - Gauss's Law
  - Biot Savart Law
  - Ampere's Law
  - Faraday's Law
- Maxwell's Equations
- Electromagnetic Waves



# Coulomb's Law



If two electric charges,  $q_1$  and  $q_2$ , are separated by a distance, r, they experience a force,  $\vec{F}$ , given by:



Charles Augustin de Coulomb (1736-1806)



- Two charges of opposite sign attract; and two charges of the same sign repel each other.
- The magnitude of the electric force is proportional to the magnitude of each of the two chares and inversely proportional to the distance between the two charges
- This electric force is along the line between the two charges



# **Electric Field**



• The electric field of a charge  $\mathbf{q}_1$ , at  $\mathbf{P}$  a distance  $\mathbf{r}$  from the electric charge is defined as:

$$\vec{E}(\mathbf{r}) = \frac{\mathbf{q}_1 \hat{\mathbf{r}}}{4\pi \varepsilon_0 \mathbf{r}^2} \qquad \mathbf{q}_1 \qquad \mathbf{r}$$



# **Electric Field**



• The electric field of a charge  $\mathbf{q}_1$ , at a distance  $\mathbf{r}$  from the electric charge is defined as:

$$\vec{E}(\mathbf{r}) = \frac{\mathbf{q}_1 \hat{\mathbf{r}}}{4\pi \, \epsilon_2 \, \mathbf{r}^2} \qquad \mathbf{q}_1 \qquad \mathbf{r} \qquad \mathbf{q}_2$$

• Remember, that the force on a charge  $q_2$  located a distance r due to  $q_1$  is give by

$$\vec{F} = \frac{q_1 q_2 r}{4\pi \epsilon_0 r^2}$$

$$\vec{\mathbf{F}} = \mathbf{q} \ \vec{\mathbf{E}}$$

- Linear Superposition
  - The total electric field at a point in space is due to a number of point charges is the vector sum of the electric fields of each charge
- Electric field of a point charge



# Gauss's Law



Define: the "Electric Flux Density :

$$\vec{\mathbf{D}} = \boldsymbol{\varepsilon}_{o} \ \vec{\mathbf{E}}$$

Then, Gauss's Law states that :

$$\iint \vec{\mathbf{D}} \cdot \mathbf{d\vec{S}} = \mathbf{Q}_{\text{Enclosed}}$$

$$\mathbf{Q}_{\text{Enclosed}} = \iiint \rho^{t} \mathbf{dV}$$

Volume Charge Density

 Integrating the Electric Flux Density over a closed surface gives you the charge enclosed by the surface

 Using vector calculus, Gauss's law may be cast in differential form:

$$\nabla \cdot \vec{\mathbf{D}} = \rho$$

Carl Freidrich Gauss (1777-1855)





# **Biot Savart Law**



- Define:  $\vec{H}$  = Magnetic Field and  $\vec{B}$  = the Magnetic Flux Density
- The Biot-Savart law:
  - The differential magnetic field  $d\vec{H}$  generated by a steady current flowing through the length  $d\vec{l}$  is:

$$d\vec{\mathbf{H}} = \left[\frac{\mathbf{I}}{4\pi}\right] \left[\frac{d\vec{\mathbf{l}} \times \hat{\mathbf{R}}}{\mathbf{R}^2}\right] (\mathbf{A}/\mathbf{m})$$

- where  $\hat{\mathbf{R}}$  is a unit vector along the line from the current element location to the measurement position of  $d\hat{\mathbf{H}}$  and  $\hat{\mathbf{R}}$  is the distance between the current element location and the measurement position of  $d\hat{\mathbf{H}}$
- For an ensemble of current elements, the magnetic field is given by:

$$\vec{\mathbf{H}} = \left[\frac{\mathbf{I}}{4\pi}\right] \int_{1}^{1} \frac{d\vec{\mathbf{I}} \times \hat{\mathbf{R}}}{\mathbf{R}^{2}}$$

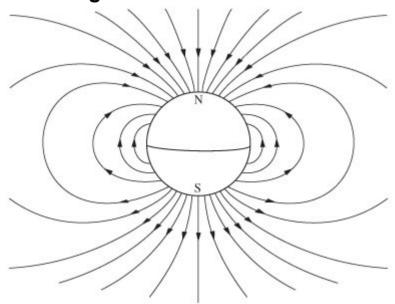
── Jean-Baptiste Biot (1774-1862) Felix Savart (1791-1841)



# Magnetic Flux and the Absence of Magnetic Charges







Law stating that there are no magnetic charges:

$$\iint \vec{\mathbf{B}} \cdot d\vec{\mathbf{S}} = \mathbf{0} \qquad \vec{\nabla} \cdot \vec{\mathbf{B}} = \mathbf{0}$$

Integrating the Magnetic Flux Density over a closed surface gives you the magnetic charge enclosed by the surface (zero magnetic charge)

- This is "Gauss's Law" for magnetism
  - Law of non-existence of magnetic monopoles
  - A number of physicists have searched extensively for magnetic monopoles

Find one and you will get a Nobel Prize

 Magnetic field lines always form closed continuous paths, otherwise magnetic sources (charges) would exist



# **Amperes Law**



- Ampere's law (for constant currents):
- If  $\mathbf{c}$  is a closed contour bounded by the surface  $\mathbf{S}$  , then

$$\oint_{\mathbf{c}} \vec{\mathbf{H}} \cdot d\vec{\mathbf{s}} = \iint_{\mathbf{S}} \vec{\mathbf{J}} \cdot d\vec{\mathbf{S}} = \mathbf{I} \qquad \qquad \vec{\nabla} \times \vec{\mathbf{H}} = \vec{\mathbf{J}}$$

- The sign convention of the closed contour is that  $\vec{I}$  and  $\vec{H}$  obey the "right hand rule"
- The line integral of  $\vec{H}$  around a closed path c equals the current moving through that surface bounded by the closed path

Andre-Marie Ampere (1775-1836)





# Faraday's Law



• A changing magnetic field induces an electric field.

$$\oint_{S} \vec{\mathbf{E}} \cdot d\vec{\mathbf{s}} = -\iint_{S} \frac{\partial \vec{\mathbf{B}}}{\partial t} \cdot d\vec{\mathbf{S}}$$

$$\vec{\nabla} \times \vec{\mathbf{E}} = -\frac{\partial \vec{\mathbf{B}}}{\partial t}$$

• Induced electric fields are determined by:

$$-rac{\partial \vec{\mathbf{B}}}{\partial \mathbf{t}}$$

Magnetostatic fields are determined by :

$$\mu_o\vec{J}$$

Michael Faraday (1791-1867)





# **Outline**



Introduction



- **Maxwell's Equations** 
  - Displacement Current
  - Continuity Equation
  - Boundary Equations
- Electromagnetic Waves



# **Electromagnetism (Pre Maxwell)**



$$\begin{array}{lll} \text{Gauss's Law} & \displaystyle \oiint \vec{D} \cdot d \, \vec{S} = \iiint \rho \, dV & \nabla \cdot \vec{D} = \rho \\ & \text{Magnetic Charges} & \displaystyle \oiint \vec{B} \cdot d \, \vec{S} = 0 & \nabla \cdot \vec{B} = 0 \\ & Do \ \text{Not Exist} & \displaystyle \oiint \vec{E} \cdot d \, \vec{S} = -\iint \frac{\partial \vec{B}}{\partial t} \cdot d \, \vec{S} & \vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \\ & \text{Ampere's Law} & \displaystyle \oiint \vec{H} \cdot d \, \vec{S} = \vec{J} \cdot d \, \vec{S} & \vec{\nabla} \times \vec{H} = \frac{\partial \vec{D}}{\partial t} + \vec{J} \\ & \vec{D} = \epsilon \, \vec{E} & \vec{B} = \mu \, \vec{H} \\ & \end{array}$$

Surprise! These formulae are inconsistent!



# The "Pre-Maxwell Equations" Inconsistency



Inconsistency comes about because a well known property of vectors:

$$\vec{\nabla} \cdot (\vec{\nabla} \times \vec{\mathbf{A}}) = \mathbf{0}$$

Apply this to Faraday's law

$$\vec{\nabla} \cdot (\vec{\nabla} \times \vec{\mathbf{E}}) = \vec{\nabla} \cdot \left( \frac{-\partial \vec{\mathbf{B}}}{\partial t} \right) = -\frac{\partial}{\partial t} (\vec{\nabla} \cdot \vec{\mathbf{B}})$$

- The left side is equal to 0, because of the above noted property of vectors
- The right side is 0, because  $\vec{\nabla} \cdot \vec{\mathbf{B}} = \mathbf{0}$
- If you do the same operation to Ampere's law .....Trouble...



# "How Displacement Current Came to Be"



$$\vec{\nabla} \cdot (\vec{\nabla} \, \mathbf{x} \, \vec{\mathbf{H}}) = \frac{\vec{\nabla} \cdot \vec{\mathbf{J}}}{\mu_o}$$

- The left side is 0; but the right side is not, generally 0
- If one applies Gauss's law and the continuity equation:

$$\vec{\nabla} \cdot \vec{\mathbf{J}} + \frac{\partial \rho}{\partial t} = \mathbf{0}$$

The above equation become:

$$\vec{\nabla} \cdot \vec{\mathbf{J}} = -\frac{\partial \rho}{\partial t} = -\frac{\partial}{\partial t} \left( \boldsymbol{\epsilon}_{o} \, \vec{\nabla} \cdot \vec{\mathbf{E}} \right) = -\nabla \cdot \left( \boldsymbol{\epsilon}_{o} \, \frac{\partial \vec{\mathbf{E}}}{\partial t} \right)$$

• So Maxwell's Equations become consistent, if we rewrite Ampere's law as:

$$\vec{\nabla} \times \vec{\mathbf{H}} = \vec{\mathbf{J}} + \frac{\partial \vec{\mathbf{D}}}{\partial t}$$
 Displacement current

A changing electric field induces an magnetic field



# **Review - Electromagnetism**





James Clerk Maxwell

# **Maxwell's Equations**

### **Integral Form**

$$\oiint \overrightarrow{D} \cdot \overrightarrow{dS} = \iiint \rho \, dV$$

$$\oint \overrightarrow{B} \cdot d\overrightarrow{S} = 0$$

$$\oint \vec{\mathbf{E}} \cdot d\vec{\mathbf{s}} = -\iint \frac{\partial \vec{\mathbf{B}}}{\partial t} \cdot d\vec{\mathbf{S}} \qquad \qquad \vec{\nabla} \times \vec{\mathbf{E}} = -\frac{\partial \vec{\mathbf{B}}}{\partial t}$$

$$\oint \vec{\mathbf{H}} \cdot d\vec{s} = \iint \left( \frac{\partial \vec{\mathbf{D}}}{\partial t} + \vec{\mathbf{J}} \right) \cdot d\vec{S} \qquad \vec{\nabla} \times \vec{\mathbf{H}} = \frac{\partial \vec{\mathbf{D}}}{\partial t} + \vec{\mathbf{J}}$$

$$\vec{\mathbf{D}} = \boldsymbol{\varepsilon} \vec{\mathbf{E}}$$

### **Differential Form**

$$\nabla \cdot \overset{\rightarrow}{D} = 4 \pi \rho$$

$$\nabla \cdot \overrightarrow{\mathbf{B}} = \mathbf{0}$$

$$\vec{\nabla} \times \vec{\mathbf{E}} = -\frac{\partial \vec{\mathbf{B}}}{\partial t}$$

$$\vec{\nabla} \times \vec{\mathbf{H}} = \frac{\partial \vec{\mathbf{D}}}{\partial t} + \vec{\mathbf{J}}$$

**Electric Field** 

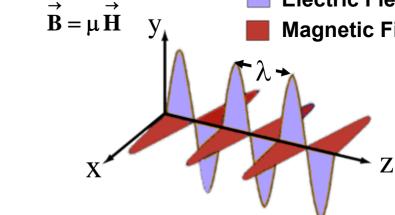
**Magnetic Field** 



**No Sources** 

 $\vec{\mathbf{E}}(\vec{\mathbf{r}},t) = \mathbf{E}_{\circ} e^{j(\vec{\mathbf{k}}\cdot\vec{\mathbf{r}}-j\mathbf{w}t)}$ 

Vacuum Non-Conducting Medium 
$$\vec{B}(\vec{r},t) = B_{\circ} e^{j(\vec{k}\cdot\vec{r}-jwt)}$$

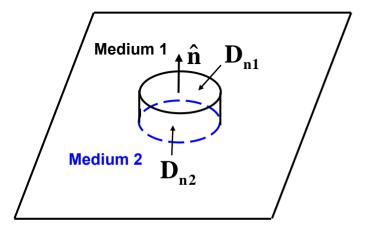




# **Boundary Equations**



 $\mathbf{D}_{n1}$  is the normal component of  $\vec{\mathbf{D}}$  at the top of the xodlliq



$$\oiint \overrightarrow{D} \cdot d\overrightarrow{S} = \iiint \rho dV$$

In the limit, when the side surfaces approach 0, Gauss's law reduces to:

$$\hat{\mathbf{n}} \cdot (\vec{\mathbf{D}}_1 - \vec{\mathbf{D}}_2) = \sigma_{s}$$

And from  $\oint \overrightarrow{B} \cdot d\overrightarrow{S} = 0$ 

$$\hat{\mathbf{n}} \cdot (\vec{\mathbf{B}}_1 - \vec{\mathbf{B}}_2) = \mathbf{0}$$

The scalar form of these equations is

$$\mathbf{D}_{n1} - \mathbf{D}_{n2} = \mathbf{\sigma}_{s}$$
$$\mathbf{B}_{n1} - \mathbf{B}_{n2} = \mathbf{0}$$

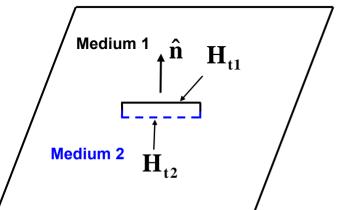
$$\mathbf{B}_{\mathbf{n}1} - \mathbf{B}_{\mathbf{n}2} = 0$$



# **Boundary Equations (continued)**



 $\mathbf{H}_{t1}$  is the tangential component of H at the top of the pillbox



In the limit, when the sides of the rectangle approach 0, Ampere's law reduces to:

$$\hat{\mathbf{n}} \mathbf{x} (\vec{\mathbf{H}}_1 - \vec{\mathbf{H}}_2) = \vec{\mathbf{J}}_s$$

And from Faraday's law

$$\hat{\mathbf{n}} \times (\vec{\mathbf{E}}_1 - \vec{\mathbf{E}}_2) = \mathbf{0}$$

At the Surface of a Perfect Conductor

$$\hat{\mathbf{n}} \times \vec{\mathbf{E}} = \mathbf{0}$$

$$\hat{\mathbf{n}} \times \vec{\mathbf{E}} = \mathbf{0}$$
  $\hat{\mathbf{n}} \cdot \vec{\mathbf{D}} = \mathbf{\sigma}_{s}$ 

$$\hat{\mathbf{n}} \times \vec{\mathbf{H}} = \vec{\mathbf{J}}_{s} \qquad \hat{\mathbf{n}} \cdot \vec{\mathbf{B}} = \mathbf{0}$$

$$\hat{\mathbf{n}} \cdot \vec{\mathbf{B}} = \mathbf{0}$$

The scalar form of these equations is

$$\mathbf{H}_{t1} - \mathbf{H}_{t2} = \left| \vec{\mathbf{J}}_{S} \right|$$

$$\mathbf{E}_{\mathsf{t}1} - \mathbf{E}_{\mathsf{t}2} = 0$$



# **Outline**



- Introduction
- Maxwell's Equations



- **Electromagnetic Waves** 
  - How they are generated
  - Free Space Propagation
  - Near Field / Far Field
  - Polarization
  - Propagation
     Waveguides
     Coaxial Transmission Lines
  - Miscellaneous Stuff



# Radiation of Electromagnetic Waves



Radiation is created by a time-varying current, or an acceleration (or deceleration) of charge

- Two examples:
  - An oscillating electric dipole

Two electric charges, of opposite sign, whose separation oscillates accordingly:

$$x = d_0 \sin \omega t$$

An oscillating magnetic dipole

A loop of wire, which is driven by an oscillating current of the form:

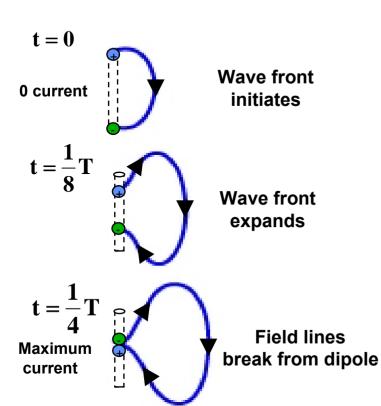
$$I(t) = I_0 \sin \omega t$$

 Either of these two methods are examples of ways to generate electromagnetic waves



# Radiation from an Oscillating Electric Dipole





T = Period of dipole oscillation

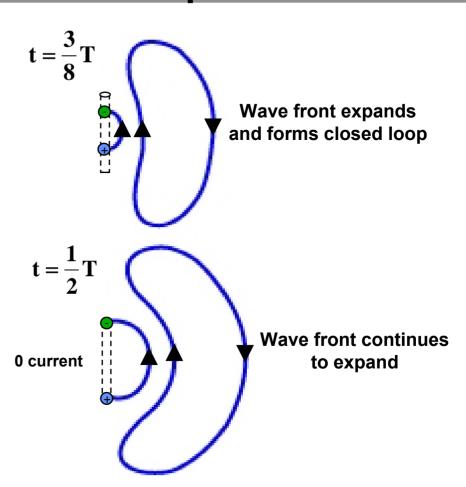


Illustration of propagation and detachment of electric field lines from the dipole

Two charges in simple harmonic motion



# MATLAB Movies for Visualization of Antenna Radiation with Time



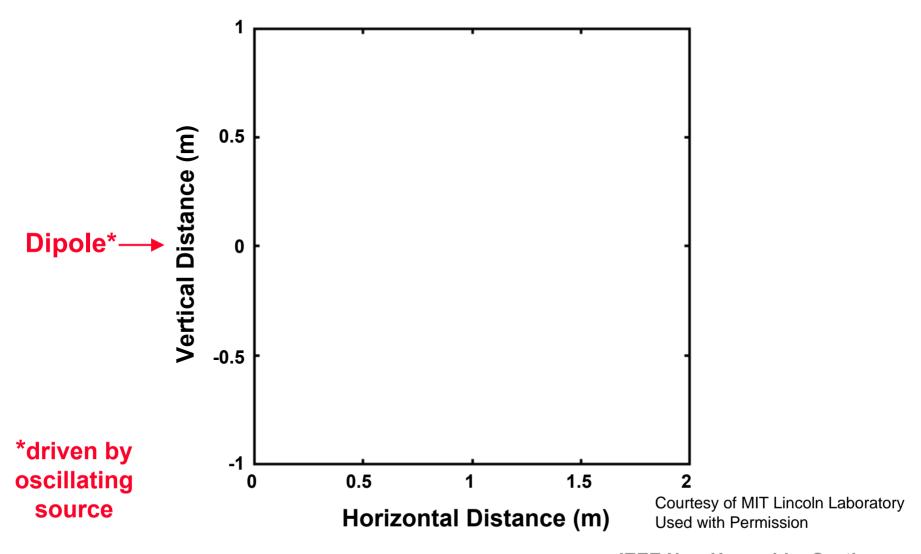
- Generated via Finite Difference Time Domain (FDTD) solution
  - We will study this method in a later lecture
- Two Cases:
  - Single dipole / harmonic source
  - Two dipoles / harmonic sources

Electric charges are needed to create an electromagnetic wave, but are not required to sustain it



# **Dipole Radiation in Free Space**

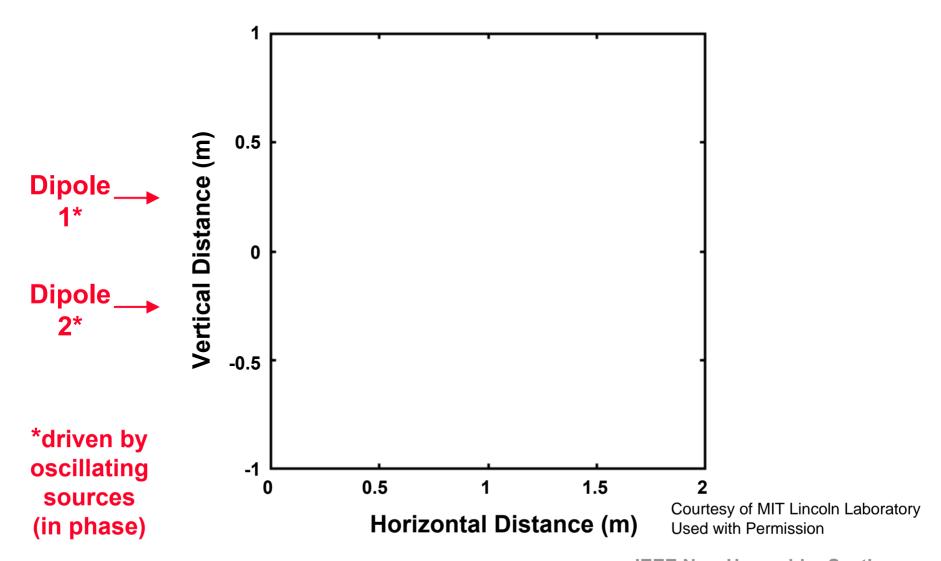






# **Two Antennas Radiating**

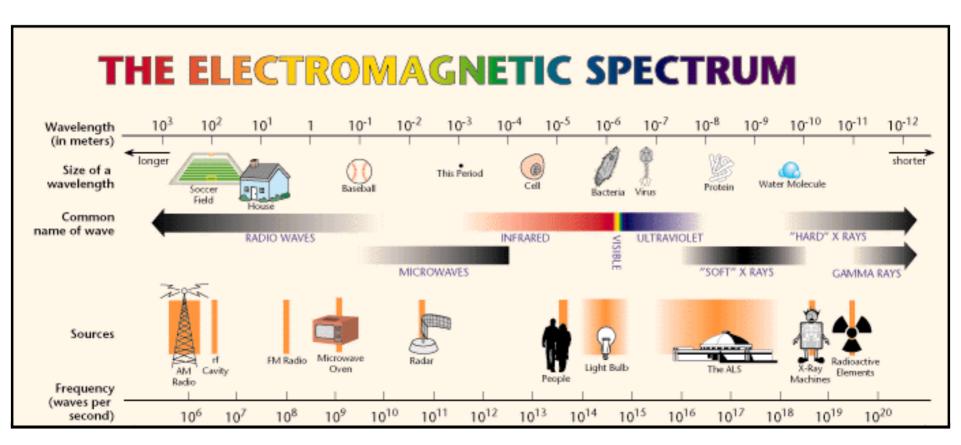






# **Electromagnetic Waves**





**———** 

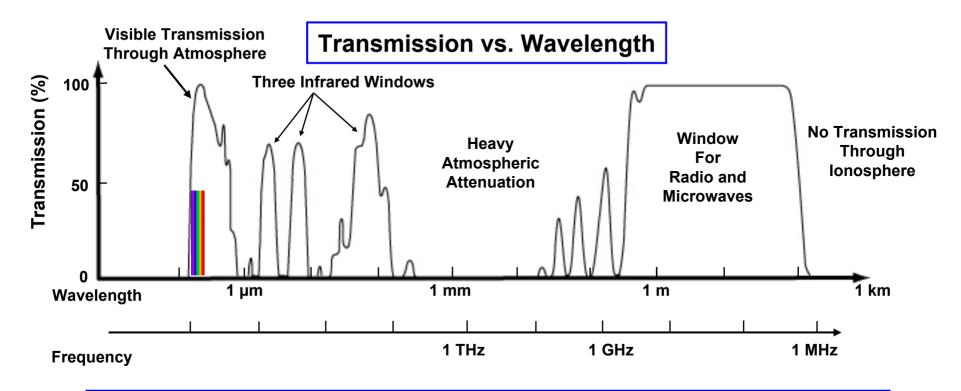
**Courtesy Berkeley National Laboratory** 

Radar Frequencies



# Why Microwaves for Radar





The microwave region of the electromagnetic spectrum (~3 MHZ to ~10 GHZ) is bounded by:

- One region ( > 10 GHz) with very heavy attenuation by the gaseous components of the atmosphere (except for windows at 35 & 95 GHz)
- The other region (< 3 MHz), whose frequency implies antennas too large for most practical applications

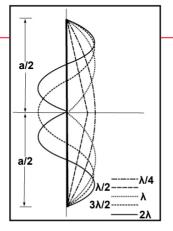


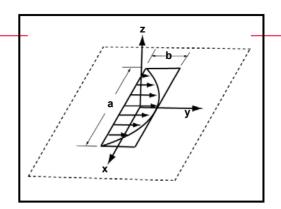
# Electromagnetic Wave Properties and Generation / Calculation



- A radiated electromagnetic wave consists of electric and magnetic fields which jointly satisfy Maxwell's Equations
- EM wave is derived by integrating source currents on antenna / target
  - Electric currents on metal
  - Magnetic currents on apertures (transverse electric fields)
- Source currents can be modeled and calculated
  - Distributions are often assumed for simple geometries
  - Numerical techniques are used for more rigorous solutions
     (e.g. Method of Moments, Finite Difference-Time Domain Methods)

Electric Current on Wire Dipole



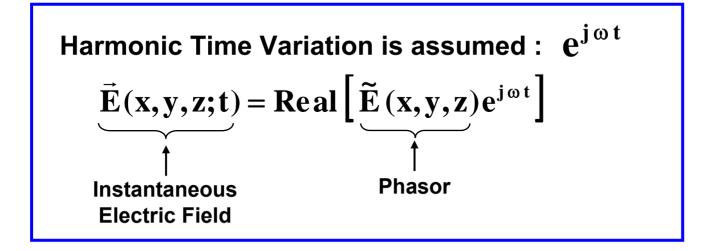


Electric Field Distribution (~ Magnetic Current) in Slot



# Antenna and Radar Cross Section Analyses Use "Phasor Representation"





Calculate Phasor: 
$$\widetilde{\mathbf{E}}(\mathbf{x},\mathbf{y},\mathbf{z}) = \hat{\mathbf{e}} \left| \widetilde{\mathbf{E}}(\mathbf{x},\mathbf{y},\mathbf{z}) \right| e^{\mathbf{j}\alpha}$$

Instantaneous Harmonic Field is : 
$$\vec{E}(x,y,z;t) = \hat{e} \left| \vec{E}(x,y,z) \right| \cos(\omega t + \alpha)$$

Any Time Variation can be Expressed as a Superposition of Harmonic Solutions by Fourier Analysis



# **Field Regions**



## **Reactive Near-Field Region**

$$R < 0.62\sqrt{D^3/\lambda}$$

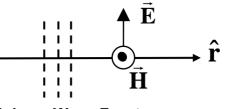
- Energy is stored in vicinity of antenna
- Near-field antenna Issues
  - Input impedance
  - Mutual coupling

# Reactive Near-Field Region Radiating Near-Field (Fresnel) Region Far-

## Far-field (Fraunhofer) Region

$$R > 2D^2/\lambda$$

- All power is radiated out
- Radiated wave is a plane wave
- Far-field EM wave properties
  - Polarization
  - Antenna Gain (Directivity)
  - Antenna Pattern
  - Target Radar Cross Section (RCS)



Plane Wave Propagates Radially Out

**Equiphase Wave Fronts** 

Far-Field (Fraunhofer) Region Courtesy of MIT Lincoln Laboratory Used with Permission



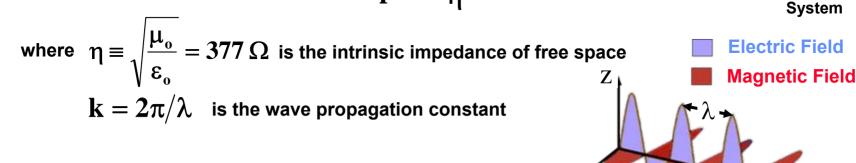
# **Far-Field EM Wave Properties**



Standard Spherical Coordinate

- In the far-field, a spherical wave can be approximated by a plane wave
- There are no radial field components in the far field
- The electric and magnetic fields are given by:

$$\begin{split} \vec{\mathbf{E}}^{\mathrm{ff}}(\mathbf{r},\theta,\phi) &\cong \vec{\mathbf{E}}^{\mathrm{o}}(\theta,\phi) \frac{e^{-\mathrm{jkr}}}{r} \\ \vec{\mathbf{H}}^{\mathrm{ff}}(\mathbf{r},\theta,\phi) &\cong \vec{\mathbf{H}}^{\mathrm{o}}(\theta,\phi) \frac{e^{-\mathrm{jkr}}}{r} = \frac{1}{n} \hat{\mathbf{r}} \times \vec{\mathbf{E}}^{\mathrm{ff}} \end{split}$$



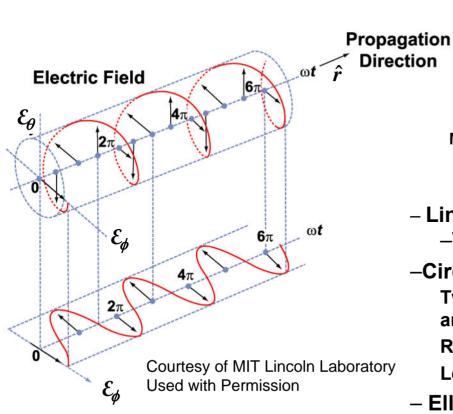


# **Polarization of Electromagnetic Wave**



- Defined by behavior of the electric field vector as it propagates in time as observed along the direction of radiation
- Circular used for weather mitigation

Horizontal used in long range air search to obtain reinforcement of direct radiation by ground reflection  $\mathcal{E}_{\theta}$ 



Major Axis **Minor Axis** 

- Linear
  - -Vertical or Horizontal
- -Circular

Two components are equal in amplitude, and separated in phase by 90 deg Right-hand (RHCP) is CW above Left-hand (LHCP) is CCW above

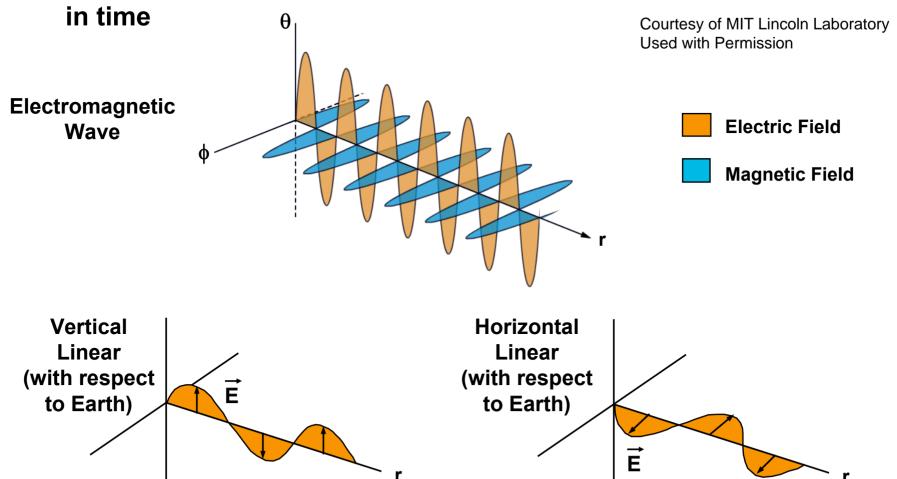
- Elliptical



# **Polarization**



Defined by behavior of the electric field vector as it propagates



(For air surveillance looking upward)

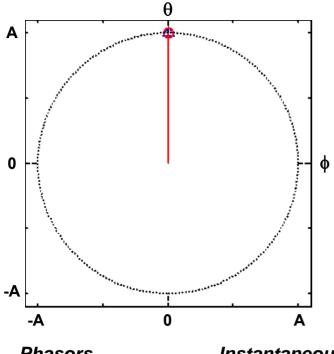
(For over-water surveillance)



# **Circular Polarization (CP)**



- Electric field components are equal in amplitude, separated in phase by 90 deg
- "Handed-ness" is defined by observation of electric field along propagation direction
- Used for discrimination, polarization diversity, rain mitigation

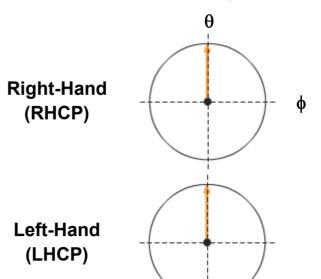


### **Phasors**

 $\boldsymbol{E}_{\boldsymbol{\theta}} = \boldsymbol{A}$  $E_{\phi} = Ae^{-j\pi/2}$  Instantaneous

$$E_{\theta}(t) = A\cos(wt)$$
$$E_{\phi}(t) = A\sin(wt)$$

### **Propagation Direction** Into Paper



Courtesy of MIT Lincoln Laboratory Used with Permission

**Electric Field** 



# **Propagation – Free Space**



- Plane wave, free space solution to Maxwell's Equations:
  - No Sources
  - Vacuum
  - Non-conducting medium

$$\overrightarrow{\mathbf{E}}(\overrightarrow{\mathbf{r}},t) = \mathbf{E}_{\circ} \mathbf{e}^{\mathbf{j}(\overrightarrow{\mathbf{k}} \cdot \overrightarrow{\mathbf{r}} - \omega t)}$$

$$\vec{\mathbf{B}}(\vec{\mathbf{r}},t) = \mathbf{B}_{0} e^{\mathbf{j}(\vec{\mathbf{k}} \cdot \vec{\mathbf{r}} - \omega t)}$$

- Most electromagnetic waves are generated from localized sources and expand into free space as spherical wave.
- In the far field, when the distance from the source great, they are well approximated by plane waves when they impinge upon a target and scatter energy back to the radar

# **Pointing Vector – Physical Significance**



• The Poynting Vector,  $\vec{S}$ , is defined as:

$$\vec{S} \equiv \vec{E} \times \vec{H}$$

- It is the power density (power per unit area) carried by an electromagnetic wave
- Since both  $\vec{E}$  and  $\vec{H}$  are functions of time, the average power density is of greater interest, and is given by:

$$\langle \vec{\mathbf{S}} \rangle = \frac{1}{2} \operatorname{Re} \left( \vec{\mathbf{E}} \times \vec{\mathbf{H}}^* \right) \equiv \mathbf{W}_{AV}$$

For a plane wave in a lossless medium

$$\left\langle \vec{S} \right\rangle = \frac{1}{2\eta} \left| \vec{E} \right|^2 \qquad \text{where} \quad \eta = \sqrt{\frac{\mu_o}{\epsilon_o}}$$



# Modes of Transmission For Electromagnetic Waves

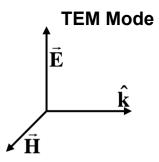


- Transverse electromagnetic (TEM) mode
  - Magnetic and electric field vectors are transverse (perpendicular) to the direction of propagation,  $\hat{\mathbf{k}}$  , and perpendicular to each other
  - Examples (coaxial transmission line and free space transmission,
  - TEM transmission lines have two parallel surfaces



- Electric field,  $\vec{\mathbf{E}}$  , perpendicular to  $\hat{\mathbf{k}}$
- No electric field in k direction
- Transverse electric (TM) mode

  - No magnetic field in  $\hat{\mathbf{k}}$  direction
- Hybrid transmission modes



Used for Rectangular Waveguides



# Guided Transmission of Microwave Electromagnetic Waves



- Coaxial Cable (TEM mode)
  - Used mostly for lower power and in low frequency portion of microwave portion of spectrum

Smaller cross section of coaxial cable more prone to breakdown in the dielectric

Dielectric losses increase with increased frequency

- Waveguide (TE or TM mode)
  - Metal waveguide used for High power radar transmission

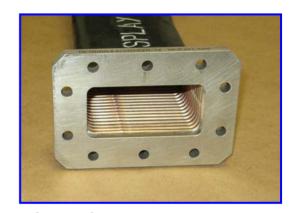
From high power amplifier in transmitter to the antenna feed

Rectangular waveguide is most prevalent geometry

### **Coaxial Cable**



**Rectangular Waveguide** 

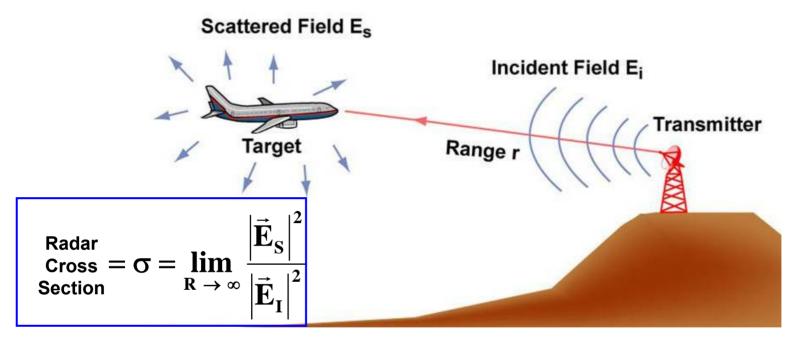


Courtesy of Cobham Sensor Systems. Used with permission.



# How Is the Size of Radar Targets Characterized?





By MIT OCW

 If the incident electric field that impinges upon a target is known and the scattered electric field is measured, then the "radar cross section" (effective area) of the target may by calculated.



# Units- dB vs. Scientific Notation



The relative value of two quantities (in power units), measured on a logarithmic scale, is often expressed in deciBel's (dB)

# **Example:**

Signal-to-noise ratio (dB) = 10 log 
$$_{10}$$
  $\frac{\text{Signal Power}}{\text{Noise Power}}$ 

| Scientific             |                                                          |                                                                                  |                                                      |
|------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------|
| <b>Notation</b>        | <u>dB</u>                                                |                                                                                  |                                                      |
| 10 <sup>1</sup>        | 10                                                       | 0 dB =                                                                           | factor of 1                                          |
| 10 <sup>2</sup>        | 20                                                       | -10 dB =                                                                         | factor of 1/10                                       |
| 10 <sup>3</sup>        | 30                                                       | -20 dB =                                                                         | factor of 1/100                                      |
|                        |                                                          |                                                                                  |                                                      |
|                        |                                                          | 3 dB =                                                                           | factor of 2                                          |
| <b>10</b> <sup>6</sup> | 60                                                       | -3 dB =                                                                          | factor of 1/2                                        |
|                        | Notation 10 <sup>1</sup> 10 <sup>2</sup> 10 <sup>3</sup> | Notation       dB         10¹       10         10²       20         10³       30 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |



# **Summary**



- This lecture has presented a very brief review of those electromagnetism topics that will be used in this radar course
- It is not meant to replace a one term course on advanced undergraduate electromagnetism that physics and electrical engineering students normally take in their 3<sup>rd</sup> year of undergraduate studies
- Viewers of the course may verify (or brush up on) their skills in the area by doing the suggested review problems in Griffith's (see reference 1) and / or Ulaby's (see reference 2) textbooks



# **Acknowledgements**



 Prof. Kent Chamberlin, ECE Department, University of New Hampshire



# References



- 1. Griffiths, D. J., *Introduction to Electrodynamics*, Prentice Hall, New Jersey, 1999
- 2. Ulaby. F. T., Fundamentals of Applied Electromagnetics, Prentice Hall, New Jersey,5<sup>th</sup> Ed., 2007
- 3. Skolnik, M., *Introduction to Radar Systems*, McGraw-Hill, New York, 3<sup>rd</sup> Ed., 2001
- 4. Jackson, J. D., *Classical Electrodynamics*, Wiley, New Jersey, 1999
- 5. Balanis, C. A., *Advanced Engineering Electromagnetics*, Wiley, New Jersey, 1989
- 6. Pozar, D. M., Microwave Engineering, Wiley, New York, 3<sup>rd</sup> Ed., 2005



# **Homework Problems**



- Griffiths (Reference 1)
  - Problems 7-34, 7-35, 7-38, 7-39, 9-9, 9-10, 9-11, 9-33
- Ulaby (Reference 2)
  - Problems 7-1, 7-2, 7-10, 7-11, 7-25, 7-26
- It is important that persons, who view these lectures, be knowledgeable in vector calculus and phasor notation. This next problem will verify that knowledge
  - Problem- Take Maxwell's Equations and the continuity equation, in integral form, and, using vector calculus theorems, transform these two sets of equations to the differential form and then transform Maxwell's equations from the differential form to their phasor form.